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ABSTRACT 

The shapes of malignant breast tumors are more complex than the benign lesions due to their nature of infiltration into 
surrounding tissues. We investigated the efficacy of shape features and presented a method using polygon shape 
complexity to improve the discrimination of benign and malignant breast lesions on ultrasound. First, 63 lesions (32 
benign and 31 malignant) were segmented by K-way normalized cut with the priori rules on the ultrasound images. 
Then, the shape measures were computed from the automatically extracted lesion contours. A polygon shape complexity 
measure (SCM) was introduced to characterize the complexity of breast lesion contour, which was calculated from the 
polygonal model of lesion contour. Three new statistical parameters were derived from the local integral invariant 
signatures to quantify the local property of the lesion contour. Receiver operating characteristic (ROC) analysis was 
carried on to evaluate the performance of each individual shape feature. SCM outperformed the other shape measures, 
the area under ROC curve (AUC) of SCM was 0.91, and the sensitivity of SCM could reach 0.97 with the specificity 
0.66. The measures of shape feature and margin feature were combined in a linear discriminant classifier. The 
resubstitution and leave-one-out AUC of the linear discriminant classifier were 0.94 and 0.92, respectively. The 
distinguishing ability of SCM showed that it could be a useful index for the clinical diagnosis and computer-aided 
diagnosis to reduce the number of unnecessary biopsies. 
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1. INTRODUCTION 
Breast ultrasound is a useful adjunct to X-ray mammography in reducing the number of negative biopsy results. The 
clinical analysis of breast images is currently almost exclusively done by a qualitative assessment of lesion features 
within an image1. In the clinical evaluation of breast lesions on ultrasound, radiologists consider features that include 
lesion shape, margin definition, echogenic texture, posterior acoustic enhancement, or shadowing2. The interpretation of 
ultrasound images, however, is highly dependent on the experience and subjectiveness of radiologists who review and 
analyze the features of the lesion. Variations in human perception of the images, differences in features used for 
diagnosis, and, more fundamentally, a lack of quantitative measurements of the features used for image analysis are 
some of the factors that cause variability in diagnosis by individuals. Consequently, the final confirmation of benign or 
malignant diagnosis usually requires a biopsy. Computerized schemes have been proposed to reduce this operator 
dependency and to provide a more objective interpretation of ultrasound findings. The effective computer-aided 
diagnosis (CAD) system had been shown to improve the diagnostic accuracy of radiologists in the task of distinguishing 
between malignant and benign breast lesions and in avoiding unnecessary biopsy3.  

The potential of sonographic texture analysis to improve breast tumor diagnosis has already been demonstrated4-7. 
However, the texture is dependent on the imaging equipments and settings. Malignant breast tumors and benign lesions 
have different shape characteristics: the former usually are rough, spiculated, or microlobulated, whereas the latter 
commonly are smooth, round, oval, or macrolobulated. Joo et al.8 used the polar coordinates of boundary pixels of 
nodule images with the origin at their center of mass to obtain numeric values representing this feature, were calculated. 
However, the polar coordinates of boundary pixels can not represent effectively the shape of tumor since that it is 
possible that two points with the same angle have different radial distance. Chou et al.9 used the statistical parameters 
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derived from the radial length of boundaries to classify the breast tumors. Chen et al.10 proposed five morphologic 
features for breast CAD, which were nearly setting independent and could tolerate reasonable variation in boundary 
delineation. Kim et al.11 evaluated the shape features of breast masses using a computerized scheme and to correlate the 
feature values with radiologists’ grading. Objective shape features, such as compactness, fractal dimension, elliptic-
normalized circumference10, elliptic-normalized skeleton10, convex hull depth11, etc. have been used to distinguish 
benign masses from malignant tumors using pattern recognition methods for computer- aided diagnosis of breast cancer 
on ultrasound images. Actually, more similar objective shape measures, such as fractional concavity12, spiculation 
index12, index of convexity from turning angle function13, Fourier- descriptor-based factor14, etc. have been also 
developed to distinguish benign masses from malignant tumors for CAD of breast cancer on mammography. All these 
shape measures represent quantitatively shape complexity of beast tumors in some degrees. 

The purpose of our study is to find the effective shape measures which can characterize the shape complexity of the 
breast tumors. First, the breast tumors are segmented by K-way normalized cut15-16 with the proposed empirical rules. 
Then, the polygonal model and the local integral invariant signature are used to represent the lesion contours. We 
introduce a shape complexity measure (SCM) of polygon17 to the breast ultrasound, which quantified directly the shape 
complexity and was proposed primarily for query processing and optimization in spatial databases17. The distinguishing 
ability of SCM is compared to the other shape measures18. Finally, the performance of a linear classifier using the shape 
complexity and the measures of margin feature as the input vector is evaluated. 

2. METHODOLOGY 

2.1 Segmentation of breast lesions on ultrasound images by K-way normalized cut 
Notwithstanding the relative success of shape measures in the classification of breast tumors, completely automatic 
contour extraction on the ultrasound image remains to be a difficult problem. There some efforts and wonderful 
approaches on this issue8, 19-21. Considering the fact that the breast radiologists can locate easily the suspicious lesion 
region which covers only small portion of each original image, we start with the manually segmented region of interest 
(ROI) of the lesion. Rectangular ROI of the lesion area is first segmented out manually. The segmentation of images to 
separate the lesion from the surrounding tissues is performed by means of the filter based on total variation 
minimization and oscillatory functions22 and K-way normalized cut (Ncut) algorithm16. 

 
Fig. 1. The original ROI of a malignant tumor (a) and the corresponding cartoon image (b). 

 

Due to the noise and speckles in the ultrasound images, first, some noise filtering methods are needed to reduce the 
noise. And then, the segmentation method will work more efficiently. The speckle noise can be treated as the texture 
and decomposed from the ultrasound image by the variational model which combined the total variation minimization 
model with spaces of oscillatory functions22. Then the cartoon image after the decomposition process is segmented. 
Compared to the original image, the noise on the cartoon image is removed efficiently and the detailed structures are not 
lost. Actually, Nuct can easier segment the lesion region on this kind of cartoon images than the images filtered by 
others filter techniques such as median filtering and anisotropic diffusion in the experiments. Fig.1 shows an original 
ultrasound image and the corresponding cartoon image. 
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Normalized cut proposed by Shi and Malik15 formulates segmentation as a graph-partitioning problem. It maximizes the 
total dissimilarity between the different groups and the total similarity within the groups. This segmentation technique 
readily admits combinations of different features such as brightness, position, windowed histograms, etc., and has been 
successfully used in object parsing and grouping on the natural and medical images21, 23. Normalized cut had been 
developed to the multiclass spectral clustering method– K-way Ncut16.  

To apply the K-way Ncut to segment the cartoon image, the parameter K must be set beforehand. The different K would 
result in the different segmentations. Ncut was employed to partition an image into many small regions until the object 
function of Ncut reached its minimum, and then the adjacent regions were merged into several bigger regions21. We 
found that the over-segmentation could be avoided and the merging process was not necessary if K was appropriate. The 
value of K was suggested to set as the number of the tissue type on MRI image23. But the number of tissue type is 
ambiguous in the ultrasound images. As shown in Fig.2, the possible number of tissue type is 2 or 3. Actually, we can 
not obtain the ideal segmentation with K=2 or K=3. 

 
Fig. 2. The segmentation results of the cartoon image with incremental K. 

 
Fig. 3. The lesion contours extracted by K-way Ncut and the physician. The solid lines are the automatically extracted 

contours. The dashed lines are the manual contours. 

 

K-way Ncut produced a pseudo-hierarchical segmentation as shown in Fig.2: when K increased, regions tended to be 
successively divided, yet the enclosing boundaries were subject to fine adjustment. The image would be over-segmented 
if K was too large (e.g. K=15) and the lesion region could not be merged from the small regions. There is no common 
rule to determine the optimal K. We choose K through the following empirical rules based on that the lesion region is 
darker than its surrounding tissue and the centroid of lesion is located approximately at the center of ROI18. 

1. The lesion region which is closest to the center of ROI is isolated to the margin of ROI with certain k. 

2. Set k’=k+1 and segment the image with k’ if k satisfies rule1. The optimal K is selected as k’ if the overlap area of 
the lesion regions corresponding to k’ and k is larger than 95% of the lesion area corresponding to k. This rule 
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ensures that the lesion region corresponding to k is not under-segmented and the lesion region corresponding to k’ 
is not over-segmented. 

3. The segmentation process is failed if there is no k satisfies rule1 and rule2. 

K ranged from 2 to 8. For the case in Fig. 2, the selected K is 6. To improve the computing efficiency, the multiscale, 
graph decomposition24 algorithm for K-way Ncut was implemented in the segmentation stage. Fig. 3 shows the 
segmentation results by K-way Ncut with the proposed empirical rules. The global shapes of segmented lesions are 
rather similar to the manual ones. Furthermore, K-way Ncut can capture more structural details of lesion contours than 
human. 

2.2 Shape analysis of lesion contour 
In this paper, we adopted local integral invariant (LII) signatures25-27 and polygonal approximation to represent the 
contour.  

2.2.1 Polygonal approximation of lesion contour and shape complexity measure 

The initial contours extracted from the segmented lesions are usually jagged and sensitive to noise, which have too 
many vertices. Polygonal approximation is required not only to reduce the amount of data to be processed subsequently, 
but also to preserve most of the shape information of the initial contours. It is a convenient representation for shape 
analysis and recognition, and its perimeter can also be calculated efficiently. In recent decades, a number of methods 
have been proposed for polygonal approximation. Since dominant points represent a local shape property and allow 
their efficient representation for applying feature extraction, we employ a modified polygonalisation algorithm based on 
adaptive dominant point detection28 to obtain the polygonal represent of the tumor contour. The aim of polygonalisation 
in this paper is to obtain the compact represent of digitized contour and preserve the structures of spicules and lobes 
along the tumor contour. 

The adaptive dominant point detection method proposed by Wu28 is used to detect the dominant points, which computes 
the suitable length of support region for each point to find the best approximated curvature and the dominant points are 
identified as the points with local maximum curvatures. In addition, the break point detection is conducted to reduce the 
computations. The detected dominant points with a given threshold of curvature (set to -0.8 in the experiments) are not 
suitable polygonal represent for the breast tumor contour. There may be too many vertices or too few vertices to fit the 
contour. The merging and splitting schemes similar to12, 26 are iteratively implemented until convergence using the 
dominant points as the initial polygonal vertices. In the merging scheme, the line segments with length less than the 
threshold (set to 3 pixels in the experiments) are merged to one of its adjacent line segments so that the smaller 
integrated squared error (ISE) can be obtained, and the two adjacent line segments with the angle greater than a given 
threshold (set to 170°) are merged to one line segment. In the splitting scheme, the arc-to-chord distance is computed for 
all the vertices and the point on the contour with the maximum arc-to-chord deviation greater than the threshold (set to 5 
pixels) is located as a new polygonal vertices. Contrast to the algorithm in12, 29, the adaptive dominant point detection 
can reduce significantly the number of irrelevant points and avoid estimating the curvatures with a fixed scale. The final 
results of polygonal models of the boundaries of two malignant tumors are shown in Fig.4.  

 
Fig. 4. The polygonal models of two malignant tumor contours. 

We introduce a shape complexity measure of polygon proposed by17 to characterize the complexity of contour. The 
complexity of a polygon pol is defined as follows: 
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SCM(pol)= w1× ampl(pol) ×freq(pol)+ w2×conv(pol), 

where w1 and w2 are the weight coefficients, ampl(pol) and freq(pol) are the amplitude and frequency of the vibration of 
the polygon, conv(pol) is the global shape convexity measure. The weight coefficients w1 and w2 are set to 0.9 and 0.1, 
respectively. freq(pol) is computed as follows: 

freq(pol) = 16( normnotche(pol) – 0.5 )4 – 8( normnotche(pol) – 0.5 )2 + 1, 

where normnotches is the normalized number of notches. Notches describe the non-convex parts of a polygon, which 
are the vertices of the polygon with the interior angle larger than π. Let notches and vertices describe the number of 
vertices and the number of notches, respectively. The number of notches can be normalized to the interval [0, 1] by 

normnotche(pol) = notches(pol) / (vertices – 3), 

since the following property holds: 

notches(pol) ≤ vertices – 3, 

The polygons show the highest vibration when normnotches is about 0.5 and the lowest vibration for values of 0 and 1. 

  ampl(pol) is defined as the relative increase of the boundary compared to its convex hull: 

ampl(pol) = ( boundary(pol) – boundary( convexhull(pol) ) ) / boundary(pol), 

where boundary() indicates the operator to compute the perimeter of polygon, convexhull(pol) indicates the convex hull 
of polygon. If the polygon is convex, ampl will be 0. The higher the amplitude is, the longer the boundary is and the 
higher ampl is. 1 is the unreachable limit of ampl. 

conv(pol) is the convexity of a polygon with the following formula: 

conv(pol) = ( area(convexhull(pol)) –  area(pol) ) / area(convexhull(pol)). 

A convex polygon has a very simple shape, whereas a polygon which strongly differs from its convex hull is considered 
to have a complex shape. conv is 0 for a convex polygon. The higher the deviation of the polygon from its convex hull, 
the higher conv is. 

 
Fig. 5. The synthetical polygons and the values of their SCM. 

 
Fig. 6. The automatic extracted tumor contours and the values of their SCM. 
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SCM is in the range [0, 1]. The rough, spiculated, or microlobulated contours lead to the complex polygons whereas the 
smooth, round, oval, or macrolobulated contours lead to the simple convex polygons. Fig. 5 shows the synthetical 
shapes and the values of their shape complexity. It can be clearly seen from Fig. 5 that the results are in accordance with 
the perception of humans. Fig. 6 shows the segmented lesion contours and the values of their complexity measures. 
From Fig 6, the more lobes and spicules occur on the lesion contour, the larger value of SCM is. The values of SCM 
close to 0 indicate a simple contour and values larger than 0.05 occur for the contours with the lobes and sipcules. 

2.2.2 Local integral invariant signatures 

The local integral invariant is an effective descriptor for shape and a local change of a shape affects the values of the 
integral invariant for the entire shape, which have been applied to shape matching successfully. In general, the term 
feature Fσ indicates any image statistic. In particular, local features are functions of the image defined on a compact 
subset of its domain, including ‘soft’ versions where the ‘effective subset’ is determined by a kernel25:  

( , ) * ( )F x K xδ δχ χ= , 

where Kσ is a Gaussian kernel: 
22 2/( ) /( 2 )xK x e δ

δ πδ−= . 

Applied to a binary image χ, the feature value Fσ computed at a boundary point is related to the curvature at that point 
with a given scale σ25, 27. From (1), Fσ is bounded between 0 and 1. In fact, Fσ entails a regularized notion of curvature in 
a scale-space even where the boundary is not differentiable25. In25, 27 Fσ was called as local area integral invariant. Fσ is 
robust to noise (lack of differentiability) of the boundary. As defined in the feature function, a scale is associated with 
features of interest and various levels of features can be characterized in a feature scale-space with varying scales. 
Despite the fact that local features entail ‘blurring’ with a kernel, the geometrical shape attributes are precisely 
preserved in the shape representation26. Fig.7 shows a tumor contour and its LII signatures. 

 
Fig. 7. A contour of segmented malignant tumor (a) and the corresponding LII signatures (b). 

 

Three new measures are derived from the local integral invariant signatures to quantify the local anfractuosity of lesion 
contours. The standard deviation (SD) of LII:  

2

1
( ( ) ) /( 1)

N

Avg
i

SD F i F Nδ δ
=

= − −∑ , 

where FσAvg is the mean of Fσ and N is the number of boundary pixels.  

The entropy of LII: 

1
log( )

nbins

k k
k

Entropy p p
=

= −∑ , 
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where pk is the probability that the value of LII is between (k-1)/nbins and k/nbins, pk is computed via a normalized 
histogram, and nbins is set to 32. 

The roughness index of contour:  

1
log( ( ) ( ) / )

N

i
Roughness F i n F i Nδ δ

=

= + −∑ , 

where n is the interval of boundary points. 

2.2.3 Other shape measures 

There are many others useful shape measures proposed by the researchers for distinguishing the malignant and benign 
lesions. Spiculation can be particularly valuable, since it provides a direct radiographic manifestation of the local 
aggressivity of invasive breast cancer. Some spiculation measures were proposed by the researchers, such as spiculation 
index (SI)[12], fractional concavity (Fcc) 12, and index of convexity (CITA) from the turning angle function13. SI12 is a 
measure derived by combining the ratio of the length to the base width of each possible spicule in the contour of the 
given lesion and is computed from the polygonal model. CITA

13 is derived from the smoothed turning angle function. 
Fractional concavity (Fcc) is a measure of the portion of the indented length to the total contour length; it is computed 
by taking the cumulative length of the concave segments and dividing it by the total length of the contour12. Others 
shape descriptors, such as Depth–Width Ratio (DWR), Compactness, Irregularity, Solidity, Convex Hull Depth 
(CHD)11, Elliptic-Normalized Circumference (ENC)10, Elliptic-Normalized Skeleton (ENS) 10, Fourier Factor (FF) 14, 
box-counting Fractal Dimension (FD) 13 are also computed from the lesion contours extracted automatically by K-way 
normalized cut.  

3. RESULTS 

3.1 Images data 
The ultrasound image database comprises 63 images of pathologically proven benign breast lesions from 32 patients and 
carcinomas from 31 patients. The images were collected from 2003 to 2006; the patients’ ages ranged from 18 to 75 
years. Sonography was performed using two types of scanners with the 7.5-15 MHz linear transducers. The database 
was supplied by the coauthor, an experienced physician, Dr. Chen, from the Shanghai Sixth People’s Hospital, Shanghai. 

3.2 Segmentation results 
For each ROI, the lesion contour was extracted using K-way Ncut. Three cases with heavy shadowing and calcification 
failed in the segmentation stage and had been corrected manually. The mean of match rate between the manually 
determined lesion region and the automatically detected region was 88% and the mean of Hausdorff distance between 
their contours was 15.5 pixels which were estimated using 10 ROI with the manual contours. The performance of the 
proposed segmentation method was compared to some reported methods18, 19-21. 

3.3 Performance of shape complexity measure 
To evaluate the performance of each individual shape feature, a receiver operating characteristic (ROC) curve was 
generated by using a sliding threshold on each feature and computing the sensitivity and specificity for each threshold. 
The true-positive fraction (TPF), or sensitivity, is the proportion of the malignant cases correctly identified by the 
classifier. The false-positive fraction (FPF) is the proportion of the benign cases incorrectly identified by the classifier 
as malignant. The TPF and the FPF are plotted to yield the ROC curve. The overall classification performance is 
summarized by the area under the ROC curve (AUC). 

When we use local integral invariant to characterize the lesion contour, the effect of scale parameter σ should be 
considered. The experimental results suggested that 12 pixels is the appropriate value for σ. Tab.1 lists AUC of the all 
16 shape measures. The results from Table 1 show that SCM has the best performance (AUC=0.913). The distribution 
of SCM is shown in Fig.8. In Fig.8, the benign and malignant classes are clearly separated. The mean of SCM on the 
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benign and malignant cases are 0.0261 and 0.0852, respectively. Fig.9 shows the ROC curve of SCM. The sensitivity of 
SCM can reach 0.97 with the specificity 0.66.  

 

Table 1. AUC of the shape measures 

Measure SCM SD of LII Entropy of LII RI SI CITA Fcc FF 
AUC 0.913 0.864 0.862 0.796 0.773 0.772 0.687 0.832 

Measure ENC ENS Irregularity CHD Compactness Solidity FD DWR 
AUC 0.880 0.822 0.545 0.883 0.830 0.883 0.755 0.665 

3.4 Classification using linear discriminant analysis 
Atypical cases of macrolobulated or spiculated benign lesions, as well as microlobulated or well-circumscribed 
malignant tumors create difficulties in pattern classification. It is difficult to distinguish completely the benign and 
malignant lesions only using the shape features. Actually, radiologists consider features that include lesion shape, 
margin definition, echogenic texture, posterior acoustic enhancement, or shadowing in the clinical evaluation of breast 
lesions on ultrasound. Since the texture measures vary nonlinearly with the system settings, we only extract four 
measures of margin feature which are relatively independent of the imaging settings. The extracted measures of margin 
features are Normalized Radial Gradient Index30, Relative Brightness31 and Margin sharpness32. The selected measures 
of shape features are SCM, Entropy of LII, and Elliptic-Normalized Circumference.  

   
   Fig.8. The distribution of SCM.          Fig.9. ROC curve of SCM.       Fig.10. ROC curves of LDA classifier. 

 

There are various classification methods which can be used to build the classifier for the breast tumor CAD. Since the 
amount of image samples is limited, to avoid the over-optimistic estimation, we used linear discriminant analysis (LDA) 
to merge the computer-extracted features. ROC analysis was also used to evaluate the performance of LDA classifier in 
the task of distinguishing benign from malignant lesions. We used two techniques to estimate the ROC: the 
resubstitution method, which has an optimistic bias (estimated higher than the actual), and the leave-one-out method, 
which has a pessimistic bias. In resubstitution, the same set of cases is used for training (computing classifier 
parameters) as for testing (estimating the ROC). In a leave-one-out analysis a subset of all but one case is used for 
training, then the classifier output, is computed for the case that was taken out. This is repeated for all cases, generating 
a table of statistics that are used for ROC analysis. The ROC curves of LDA classifier are shown in Fig. 10. The 
resubstitution and leave-one-out AUC are 0.943 and 0.916, respectively.  

4. DISCUSSION AND CONCLUSIONS 
This paper introduced a new measure of shape complexity to characterize the automatic extracted tumor contours, which 
outperformed the other measures of shape features. Compared to the terminologies about shape in the BI-RADS 
lexicon33 for ultrasonography including ‘Oval’, ‘Round’, and ‘Irregular’, SCM is an objective, continuous index and will 
be not ambiguous in the computerized scheme. The significant difference of SCM between the benign and malignant 
lesions suggested that it would be a useful index for the clinical diagnosis to reduce the number of unnecessary biopsies. 
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Combining SCM, Entropy of LII, and the margin features, a simple LDA classifier had the classification performance 
compared to the various proposed CAD models. More effective classifier methods, such as support vector machine and 
boosting, can also be used to build the classifier for the CAD system. However, the current image database only 
contained a limited amount of ultrasound images. We used LDA to obtain the consistent estimation of classification 
performance. The AUC of the proposed system is up to 0.92. 

However, the conclusions of this paper are limited by the size of the study samples. The proposed system only used 
measures of shape and margin features. The methods to extract effective measures which can quantity echo pattern, 
surrounding tissue, and calcifications should be developed. In the nearly future, we will collect more breast ultrasound 
images and develop the classification system on ultrasound for pathology types of breast lesion. 
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